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Summary. The theory of Kutzelnigg and Klopper, which introduces the intere- 
lectronic co-ordinates into the first order Moller-Plesset wavefunction, requires 
diagonal matrix elements of the operators: 

1"12 × - - -  1 
F12 

and 

{ /'12" ( V 1 -  V 2 ) ~ }  
r12 X 4r12 + . 

These are evaluated through completeness insertions, and used to obtain correc- 
tions to pair energies which vanish as the one-particle basis set becomes 
complete. We suggest optimising exponents of d and f polarisation functions to 
minimise these corrections, and have obtained ld, 2d, 3d and I f  sets for B, C, N, 
O, F and Ne. These are compared with other sets reported in the literature. 

Key worfls: d and f polarisation functions - Optimisation of exponents Elec- 
tron correlation 

1 Introduction 

There are two motivations for this work. Firstly, we have examined in some 
detail the theory of Kutzelnigg and Klopper (KK) [2-10] which introduces the 
interelectronic distance r12 explicitly into the first order Moller-Plesset wave- 
function. Secondly, we have been aware for some time that the exponents of 
polarisation functions which are commonly used today (such as the "*" in 
'6-31G*' [11, 12] and 'P' in 'DZP' [13, 14]) were not developed for correlated 
wavefunctions. In this paper, we are suggesting the use of aspects of the KK 
theory to optimise these exponents [15]. 

* Submitted in honour of Professor K. Ruedenberg, recognising in particular his introduction of the 
idea of even-tempered basis sets [1] 
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The essential K K  theory is given in Sect. 2. It involves writing the first order 
Moller-Plesset wavefunction as the usual double replacement term, together 
with an extra term derived from r12~b0, where 4~ o is the SCF wavefunction. The 
second order energy is minimised, and the difficult three- and four-electron 
integrals are evaluated through insertion of the resolution of the identity using 
the one-particle basis set. In other words, it is assumed that the one-particle basis 
set is complete: 

all 
E I~bp(1))(qSp(1)l = 1. (1) 
p 

However, it is not assumed that the product ~be(1)~bq(2) is a complete two-parti- 
cle basis and this incompleteness arises explicitly in the formula for the correc- 
tion to the pair energies f~j for the occupied orbitals ~bi and ~ß~. Specifically: 

Bj = eù + V 2 m  (2) 
B : -  u~j 

where e;j are the usual pair MP2 pair energies and: 

1 1 E <[¢,¢/][rl:l[¢~¢«]>([~~¢q]l 1[[¢/¢,1), (3) 
Vi2 = 2  2p<q 

3 1 = ~- -  E ([(9iq)j][r12[[(9p(9q]~([(Op~ßq]l (i'12" (V1 - -  V2)) [[(~i~j])" (4) 
Uij 4 4 p<q t l2 

In these expressions, [~b~qSä] denotes an antisyrnmetric product. We can see 
t ha t  Eq. (3) is a diagonal matrix element of the operator: {1} 

r12 × - - -  1 (5) 
r12 

and Eq. (4) is the corresponding expression for: { 3} 1'12 × 1'12 (V~l_ -V2)  {_~ , (6) 
47"12 

where the two-particle completeness expression has been inserted. 
The success of the K K  theory depends upon the fact that, as the basis set is 

enlarged, U« and V o. tend to zero, and in the limit of a eomplete basis set fij is 
equal to e~j. Furthermore, the remaining error infij as complete shells of increasing 
angular momentum quantum number are added to the basis set goes as (l + 1) 5; 
if only e~j is considered, the error increments as (l + 1)-3. This is shown by K K  
[9, 10] and demonstrated by ourselves [16] with calculations on Ne, H F  and H20.  
I fwe  take Ne as an example (Table 1), we find that U ( = ~  Uij) and V ( = ~  V~j) 

Table 1. Calculations on Ne (taken from ref. [16]) using extended basis sets, demon- 
strating how the values of V and U decrease as the basis set is enlarged 

Basis set - E s c  F + 128 --EMp 2 - - E M P 2  -- R12 V U 

8sSp a 0.5465 0.1912 0.6527 1.23 3.20 
8sSp5d 0.5466 0.3171 0.4068 0.13 0.09 
8sSp5d3f 0.5466 0.3520 0.3881 0.05 0.02 

a [52111111]s8p contraction of the 13s8p primitive set of Van Duijneveldt, ref. [24] 
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are good measures of the completeness of the basis set for these correlated 
wavefunctions, and this suggests that we choose basis sets which minimise these 
quantities and make the regular pair energies as reliable as possible. It has been 
known for a long time that it requires a far larger basis set for ~bp(l)~bq(2) to be 
a near complete two-particle basis than for ~bp(1) to be a near complete 
one-particle basis and this is shown by the large number of functions required to 
reach the spdf limits for U and V, which completely cover the SCF requirement. 

Historically, polarisation function exponents for first row atoms were chosen 
for SCF calculations. The 6-31G* basis sets were optimised for a selection of 
small molecules [12]. That these functions were important in allowing atomic 
orbitals to distort in a molecular environment was demonstrated in calculations 
of the inversion barrier of NH3 [17, 18], for which d functions on the nitrogen 
are almost entirely responsible [18]. 

If  a single d set is used, the basis may only be good enough for a reasonable 
SCF calculation, although circumstances oblige many to use these sets for 
correlated studies, and the suitability of these exponents is then questionable. 
Prescriptions have been given for generating larger sets by appropriate splitting 
of the ld exponent [19], but we believe that a different approach should be used. 

This problem was addressed by Dunning [10], who optimised sets of 3d2flg 
functions in CISD calculations on first row atoms. This was part of an attempt 
to obtain compact basis sets of the same quality as those developed by Almlöf 
and Taylor [21] using atomic natural orbitals. (This scheine makes it possible to 
use polarisation spaces which are effectively saturated by using a general 
contraction scheme, allowing all primitives of a given type to contribute to each 
contracted function.) 

In Sect. 3 we compare out exponents with those obtained by Dunning, and 
others in common use. We have also calculated valence MP2 energies for CH4, 
NH3, H20 , HF  and Ne with our new polarisation sets and compare them with 
energies obtained using older sets, and we suggest that out exponents are 
reasonable for correlated studies on molecules containing first row atoms. 

2 Theory 

2.1 The MP2-R12 method 

Kutzelnigg and Klopper begin with the Hylleraas variational principle: 

E (2) ~< (W(1)IH(°) - E(°>l~(° ) + 2(TJ(1)lH(1»- E°~lku(°» ) (7) 

for the energy in second order MeUer-Plesset pertubation theory (MP2). They 
argue that the main deficiency of a first order wavefunction ~01 expanded in a 
finite one-electron basis is its failure to obey the electron-electron cusp condition 
as the interelectronic distance r« tends to zero. Therefore they consider a first 
order wavefunction for the • electron pair constructed from the SCF reference 
determinant with the spin orbitals ~b e and ~bj replaced by uii: 

1 c;j{1 -- P(1)}{1 -- P(2)}r~2[ij] + ~ d~b[ab]. (8) uij(1, 2) = 
a,b 

Here, 

P(1) = ~ 14,k(1))(4,k(1) r (9) 
k 
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is a projection operator which ensures that the first term in Eq. (8) is always 
orthogonal to the reference pair: 

(uij(1, 2)[[(J] ) = O, (10) 

c;j and dff are linear variational parameters and: 

[U] = 7 ~  [~b,(1)~bj(2) - q~j(1)¢~(2)]. (11) 
v 

They substitute Eq. (8) into the Hylleraas expression (7) for the t.7 pair energy to 
give: 

1 ]uv(1, 2)> + <uo(1, 2)IF(l) + F(2) - e, - es[uo(1, 2)>. (12) 2<[0'11 ro 

An exact evaluation of this expression requires the evaluation of three- and 
four-electron integrals. Kutzelnigg and Klopper avoid this, and evaluate Eq. (12) 
approximately by assuming that q5 i and ~bj. are the exact eigenfunctions of the 
Fock operator F and that the orbital set {q~p } is complete in the one-electron 
space: 

1 = ~ I~bp(1)><~(1)l- Q(1). (13) 
P 

The result of inserting these assumptions into Eq. (12) is that the pair energy 
consists of the regular MP2 pair energy: 

- E [(aiibj) - (bjiai)]2, (14) 
a<b C a ~ e b - - e i - - e j  

and 

where 

3 
<[/j] lr,=[ 1 - Q( 1)Q(2)]Ak l[ij] > (15) 

k = l  

1 2 )  1 
A I =  c i j - ~ c i j  - -  (16a) 

rl2 

1 2 r12" (V1 - V2) (16b) 
A 2 = - - ~  ci j  r l  2 

A3 = - j  e~[K(1) + K(2), r12]. (16c) 

K(1) is the exchange operator in F(1). The evaluation of the A3 term in Eq. 
(16c), involving three-electron integrals, is much more difficult than the evalua- 
tion of the A1 and A 2 t e r m s .  If it is ignored, the pair energy f~j is given by: 

fq = e,s + (2c,: - c2.)1/;, s + c2 U, j (17) 

where eij is the conventional MP2 pair energy and: 

17 21 _12 -- 1 ]I/J] ) (I8) v = L <  <[{/] Ir,= [[Pql ><[Pq]l 

3 1_ ~ <[ij]ir,2[[pq]><[pq] l (r,2" (V,-V=))[[U]>- (19) 
U u = 4  + 4 p<q r,2 
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Finally, optimising f~j with respect to c~.j gives: 

where 

B =  eu+cuV~j (20) 

Vij (21) 
c« (V« - Utj)" 

This is a stable procedure, because it turns out that Vij and Uij have opposite 
signs, at least for the cases considered so far. This is related to the fact that 
exact asymptotic values exist for c~j, implying such relationships between V« 
and Uij. 

Both Eqs. (18) and (19) involve completeness relations such that V,j and Uij 
tend to zero as the one-electron basis set becomes complete. Turning this around 
suggests that regular pair energies e,-j become more accurate as V,y and Uij are 
reduced in magnitude. We have shown [16] that, as the basis sets become 
complete, V,j and Uij do tend to zero and the e~« become almost exact. Therefore, 
we argue that a given finite basis set will be most reliable when the exponents are 
chosen to minimise these quantities. 

2.2 Exponent optimisation 

V« and Uij are both independent of the orbital energies e;. This means that we 
can estimate the completeness of basis sets used in open shell calculations by 
forming V and U from the orbitals produced by an ROHF calculation. We 
undertook such calculations for first row atoms, starting with an 8s8p basis set 
shown to be effectively complete in our previous study. Core electrons were not 
included, and the remaining electron pairs weighted according to the number of 
possible spin orientations. 

We added polarisation functions with exponents in the following sequence: 

O~ld 

O~2d, O~2dJ~2d 

«3«, «3«113d, «~«~~« 

This imposes an even-tempered restriction [1] on the 3d set, meaning that the 
exponents form a geometric sequence. (This was the procedure used by Dunning 
[20], and Davidson and Feller [22] in their optimisation of 3d sets at the CISD 
level.) In each case, « and fl were optimised by calculating a grid of points 
around the minimum. For the ld function, this involved a single quadratic 
interpolation on a grid of Aa = 0.1. Where two parameters were involved, a 
steplength of A/~ = 0.5 was used, and the minimum obtained from a two-dimen- 
sional spline representation of the surface. All cartesian components of the d and 
f functions were used. 

Finally, we draw attention to Appendix B of Ref. [ 10], in which K K  describe 
their prescription for choosing optimum polarisation functions, assuming that 
the SCF orbitals may be represented by a single dominant basis function. Our 
work is similar to the K K  prescription, but uses the complete SCF orbitals. 
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Table 2. Values of  ld  exponents obtained by minimisation of  (i) V (Eq. (18)) and (ii) U (Eq. (19)) 
using an 8s8pld basis set, compared with literature values 

(i) V (ii) U Dunning ~ Ahlrichs/Taylor b 6311G *° 631G *e Amos ~ Feller f 

B 0.37 0.32 0.34 0.50 0.40 0.70 0.70 
C 0.57 0.50 0.55 0.72 0.63 0.80 0.80 0.55 
N 0.85 0.74 0.82 0.98 0.91 0,80 0.80 0.80 
O 1,13 1.03 1.19 1.28 1.29 0.80 0.90 1.20 
F 1,47 1.35 1.64 1,62 1.75 0.80 1.20 
Ne 1.86 1.72 2.20 2.00 2.30 

"ref. [20] 
b ref. [25] 
¢ ref. [26] 
a ref. [12] 
e ref, [29] 
fref. [221 

3 Results and discussion 

3. I Exponents 

The ld sets obtained by minimising both U and V separately are given in Table 
2. We observe that 

(i) The U-optimised sets have slightly smaller exponents than the V-optimised 
sets. 

(ii) The V- and U-sets are closer to the Dunning [20] set than any other. We 
might expect this, because it can be argued that both approaches are related to 
the optimisation of the correlation energy. The Dunning exponents are very close 
to those obtained by Feller [22] for C, N, and O. 

(iii) The Ahlrichs/Taylor [25] set has larger exponents for all atoms except Ne. 

(iv) The SCF optimised sets, 6-31G* [12] and Amos [29], do not show as much 
variation as those sets determined from correlated calculations. 

The 2d sets are shown in Table 3. We note that 

(i) Excluding B, the larger of the two exponents in the V and U sets is larger 
than the corresponding exponent in the other published sets. 

(ii) Again, the closest agreement to be between the V- and U-optimised sets and 
the Dunning set. 

The 3d sets are shown in Table 4. It is seen that there is close agreement 
between the U-optimised set and those of Dunning [20], and Feller [22], 
although the largest of the three exponents in the U set is larger than that of 
Dunning. The V-optimised exponents are somewhat larger than those optimised 
with respect to U. 

Our optimised I f  exponents are shown in Table 5. There is a good agreement 
between the V-optimised I f  set and the Dunning set, although the U set is not 
significantly different. 
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Table 3. Values of 2d exponents obtained by minimisation of (i) V (Eq. (18)) and (ii) U (Eq. (19)) 
using an 8sSp2d basis set, compared with literature values 

(i) V (ii) U Dunning a Amos b Feller ° 

B 0.21, 0.82 0.15, 0.80 0.20, 0.66 0.35, 1,05 
C 0.33, 1.39 0.24, 1.23 0.32, 1.10 0.40, 1.20 0.34, 1.16 
N 0.47, 2.08 0.35, 1.80 0.47, 1.65 0.45, 1.35 0.48, 1.68 
O 0.61, 2.75 0.45, 2.46 0.65, 2.31 0.45, 1.35 0.67, 2.47 
F 0.79, 3.57 0.56, 3.22 0.86, 3.20 0.67, 2.00 
Ne 0.99, 4.54 0.70, 4.07 1.10, 4.01 0.80, 2.40 

a rel. [20] 
b rel. [29] 
¢ rel. [22] 

Table 4. Values of 3d exponents obtained by minimisation of (i) V (Eq. (18)) and (ii) U (Eq. (19)) 
using an 8sSp3d basis set, compared with literature values 

(i) V (ii) U Dunning a Feller b 

B 0.17, 0.54, 1.80 0.12, 0.46, 1.84 0.15, 0.40, 1.11 
C 0.24, 0.83, 2.88 0.17, 0.66, 2.57 0.23, 0.65, 1.85 
N 0.34, 1.20, 4.23 0.24, 0.93, 3.65 0.34, 0.97, 2.84 
O 0.43, 1.54, 5.52 0.30, 1.24, 5.14 0.44, 1.30, 3.78 
F 0.54, 1.97, 7,23 0.36, 1.54, 6.59 0.59, 1.173, 5.01 
Ne 0.68, 2.47, 9.05 0.45, 1.92, 8.32 0.75, 2,21, 6.47 

0.31, 0.96, 2.98 
0.32, 0.94, 2.74 
0.44, 1.26, 3.56 

ref. [20] 
b ref. [22] 

Table 5. Values of lfexponents obtained by minimisa- 
tion of (i) V (Eq. (18)) and (ii) U (Eq. (19)) using an 
8s8p3dlf basis set, compared with literature values 

(i) V (il) U Dunning a Feller b 

B 0.53 0.43 0.49 
C 0.80 0.69 0.76 0.76 
N 1.15 1.02 1.09 1.06 
O 1.54 1.39 1.43 1.35 
F 2.00 1.78 1.92 
Ne 2.54 2.27 2.54 

a ref. [20] 
b ref. [22] 

3.2 MP2 energies for small molecules 

W e  h a v e  n o w  used  o u r  o p t i m i s e d  d e x p o n e n t s  in c o n j u n c t i o n  wi th  4s2p and  5s4p 
sets to  ca lcu la te  the  S C F  a n d  va l ence  M P 2  energies  o f  C H 4 ,  N H 3 ,  H 2 0 ,  H F  a n d  
Ne .  Resu l t s  a re  p r e s e n t e d  in Tab le s  6 a n d  7. 
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Table 6. Calculations on CH4, NH3, H20,  HF  and Ne at the experimental geometries a using 4s2p ld  
basis sets with the ld  exponents given in Table 2 

CH4 b NH 3 H 2 0  HF Ne 

Ahlrichs c 40.2078 56.2082 76.0455 100.0472 128.5238 
0.1594 0.1853 0.2002 0.1976 0.1770 

Dunning d 40.2053 56.2073 76.0466 100.0475 128.5240 
0.1615 0.1873 0.2021 0.1985 0.1776 

Amos e 40.2076 56.2082 76.0465 100.0479 
0.1595 0.1862 0,1977 0.1934 

4s2p ld (V)  40.2071 56.2082 76.0463 100.0477 128.5326 
0.1608 0.1864 0,2007 0.1972 0.1760 

4s2p ld(U)  40.2065 56.2080 76.0463 100.0478 128.5234 
0.1598 0.1856 0,1999 0.1960 0.1741 

- Esc F 
- -  E M P 2 ( v a l e n c e )  

ataken from rel. [10]: HF: R«=1.7328a  o 
1.91240 ao, Œ = 106.72 ° CH4: R e = 2.05227 a o 
bfor H, «p = 1.0 

° ref. [25] 
d ref. [20] 

ref. [29] 

H20: R e = 1.80885 ao, ct = 104.52 ° NH3: R e = 

In Table 6, Dunning's 4s2p segmented contraction [13] of Huzinaga's 9s5p 
primitive set [28] is used throughout. The ld exponents are those given in Table 
2. For H, a [4s/2s] basis with exponents scaled by 1.2 is used, to which a set of 
p functions with exponent of 1.0 has been added. 

We see that there is less than 0.002 Hartrees variation in the SCF energies 
given by these 4s2p ld, sets, with the Dunning CI-I 4 energy being most out of line. 
For the MP2 energies, we see that the Dunning set gives the largest absolute 
correlation energy for all of these molecules, but the correlation energies given 
by the V-optimised set are at most 0.0014 Hartrees smaller. The U-optimised set 
gives correlation energies ,-~0.001 Hartrees smaller than those obtained with the 
V-optimised set. The Amos set correlation energies are certainly inferior for H 2 0  
and HF, which is presumably due to the d exponents for O and F being too small. 

Table 7. Calculations on CH4, NH3, H20, HF  and Ne at the experimental geometries using 5s4p2d 
basis sets with the 2d exponents given in Table 3 

CH4 a NH 3 H20 HF Ne 

Amos b 40.2138 56.2182 76.0604 100.0633 128,5359 
0.1856 0.2201 0.2407 0.2512 0.2408 

Dunning c 40.2138 56.2182 76.0604 100.0633 128.5367 
0.1847 0.2202 0.2455 0.2555 0.2485 

5s4p2d(V) 40.2137 56.2178 76.0599 100.0630 128.5368 
0.1848 0.2194 0.2441 0,2541 0.2469 

5s4p2d(U) 40.2138 56.2178 76.0599 100.0630 128.5368 
0.1829 0.2177 0.2413 0.2497 0.2412 

- Es¢ F 
- -  E M P 2 ( v a l e n c e )  

afor H, ep = 1.5,0.5 
b ref. [29] 
c rel. [20] 
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The results obtained using 5s4p2d quality basis sets are given in Table 7. All 
used Dunning's 5s4p segmented contraction [27] of the 10s6p primitive set of 
Huzinaga [28] with the 2d exponents taken from Table 3. The H basis is [5s/3s] 
with p functions having exponents (0.5, 1.5). 

As expected, there is a rauch smaller variation in the SCF energies, with the 
largest being a 0.0008 Hartrees deficiency in the Amos energy for Ne. However, 
for the correlation energy there is a much greater variation, with 0.008 in the Ne 
results. Except for CH4, the Dunning set gives the largest correlation energies; 
the 5s4p2d(V) correlation energies are close to these, the largest difference being 
0.0016 for Ne. The 5s4p2d(U) optimised sets give the smallest correlation 
energies overall. 

From these limited results we observe that the energies given by our 
V-optimised sets are in close agreement with the results obtained using the 
Dunning basis, which give the largest correlation energies overaU. This method 
is therefore an alternative procedure by which optimised orbital exponents can 
be obtained. The fact that it is V, a simpler generator than U, which gives the 
best results means that the method is attractive to use because the integrals 
involving the r12 operator are easily obtained from 1/r12 integrals [16]. The 
method may therefore be used to optimise exponents for molecules as well as 
atoms, if this is desirable. 

It is perhaps interesting to finish with a comparison of the two methods for 
obtaining optimised exponents: 

(i) Here, we have suggested that the quantity: 

~ij ~~<q ([ij]]rl21[Pq])([Pq]l r~2l[iJ'])-- l} (22) 

is minimised. 

(ii) If  the MP2 pair energies are optimised (which is an approximation to the 
Dunning approach, then: 

E E ([/j] [H[[ab] )([ab] IH[[/j] ) (23) 
0" a < b E a "q- E b - -  E i - -  E j  

is maximised. 

From our calculations, it appears that the two approaches give very similar 
results. Indeed, this follows because 1/r~2 is related to the commutator [F, r12 ]. 

References 

1. Schmidt MW, Ruedenberg K (1979) J Chem Phys 71:3951 
2. Kutzelnigg W (1985) Theor Chim Acta 68:445 
3. Klopper W, Kutzelnigg W (1986) Chem Phys Lett 134:17 
4. Kutzelnigg W (1988) J Mol Struct (THEOCHEM) 181:33 
5. Klopper W, Kutzelnigg W (1989) in: Carbo R (ed) Quantum chemistry: Basic aspects, actual 

trends. Studies in Physical and Theoretical Chemistry 62:45, Elsevier, Amsterdam 
6. Kutzelnigg W, Klopper W (1989) in: Defranceschi M, Delhalle J (eds) Numerical determination 

of the electronic structure of atoms, diatomic and polyatomic molecules. NATO ASI Series, C, 
271:289, Kluwer, Dordrecht 

7. Klopper W, Kutzelnigg W (1990) J Phys Chem 94:5625 
8. Kutzelnigg W, Klopper W (1991) J Chem Phys 94:1985 



124 M.J .  Bearpark and N. C. Handy 

9. Termath V, Klopper W, Kutzelnigg W (1991) J Chem Phys 56:2002 
10. Klopper W, Kutzetnigg W (1991) J Chem Phys 56:2020 
11. Hehre WJ, Ditehfield R, Pople JA (1972) J Chem Phys 56:2257 
12. Hariharan C, Pople JA (1973) Theor Chim Acta 28:213 
13. Dunning TH (1970) J Chem Phys 53:2823 
14. Dunning TH (1971) J Chem Phys 55:3958 
15. For a reeent review of one-eleetron basis sets, see Feller D, Davidson ER (1990) in: Lipkowitz 

KB, Boyd DB (eds) Reviews in Computational Chemistry. VCH, NY 
16. Bearpark MJ, Handy NC, Amos RD, Maslen PE (1991) Theor Chim Aeta 79:361 
17. Body RG, McClure DS, Clementi E (1986) J Chem Phys 49:4916 
18. Rauk A, Allen LC, Clementi E (1970) J Chem Phys 52:4133. See also p 9 of rer [21] 
19. Frisch MJ, Pople JA, Binkley JS (1984) J Chem Phys 80:3265 
20. Dunning TH (1989) J Chem Phys 90:1007 
21. Almtöf J, Taylor PR (1987) J Chem Phys 86:4070 
22. Feller D, Davidson ER (1985) J Chem Phys 82:4135 
23. For example, see rer [20], p 29; rer [21], p 10; rer [23], p 318 
24. Van Duijneveldt FB (1971) IBM Teehnieal Report RJ945, Dec. 10 
25. Ahlrichs R, Taylor PR (1981) J Chim Phys 78:315 
26. Krishnan R, Binkley JS, Seeger R, Pople JA (1980) J Chem Phys 72:650 
27. Dunning TH (1971) J Chem Phys 55:716 
28. Huzinaga S (1965) J Chem Phys 42:1293 
29. These exponents were partially optimised in ealeulations on small moleeules at the SCF level by 

Amos RD, and are in the CADPAC tibrary 


